Density by moduli and Wijsman lacunary statistical convergence of sequences of sets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density by moduli and Wijsman lacunary statistical convergence of sequences of sets

The main object of this paper is to introduce and study a new concept of f-Wijsman lacunary statistical convergence of sequences of sets, where f is an unbounded modulus. The definition of Wijsman lacunary strong convergence of sequences of sets is extended to a definition of Wijsman lacunary strong convergence with respect to a modulus for sequences of sets and it is shown that, under certain ...

متن کامل

Wijsman Statistical Convergence of Double Sequences of Sets

In this paper, we study the concepts of Wijsman statistical convergence, Hausdorff statistical convergence and  Wijsman statistical Cauchy double sequences of sets and investigate the relationship between them.

متن کامل

On Asymptotically Wijsman Lacunary Σ-statistical Convergence of Set Sequences

In this paper we presents three definitions which is a natural combination of the definition of asymptotic equivalence, statistical convergence, lacunary statistical convergence, σ-statistical convergence and Wijsman convergence. In addition, we also present asymptotically equivalent sequences of sets in sense of Wijsman and study some properties of this concept.

متن کامل

Lacunary Statistical Convergence of Difference Double Sequences

In this paper our purpose is to extend some results known in the literature for ordinary difference (single) to difference double sequences of real numbers.Quite recently, Esi [1] defined the statistical analogue for double difference sequences x = (xk,l) as follows: A real double sequence x = (xk,l) is said to be P-statistically ∆− convergent to L provided that for each ε > 0 P − lim m,n 1 mn ...

متن کامل

On Ideal Version of Lacunary Statistical Convergence of Double Sequences

For any double lacunary sequence θrs = {(kr, ls)} and an admissible ideal I2 ⊆ P(N×N), the aim of present work is to define the concepts of Nθrs(I2)− and Sθrs(I2)−convergence for double sequence of numbers. We also present some inclusion relations between these notions and prove that Sθrs(I2)∩`∞ and S2(I2)∩ `∞ are closed subsets of `∞, the space of all bounded double sequences of numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Inequalities and Applications

سال: 2017

ISSN: 1029-242X

DOI: 10.1186/s13660-017-1294-2